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Abstract—Different cognitive tasks were investigated for use
with a brain-computer interface (BCI). The main aim was to
evaluate which two of several candidate tasks lead to patterns
of electroencephalographic (EEG) activity that could be dif-
ferentiated most reliably and, therefore, produce the highest
communication rate. An optimal signal processing method was
also sought to enhance differentiation of EEG profiles across tasks.

In ten normal subjects (five male), aged 29–54 years, EEG
activity was recorded from four channels during cognitive tasks
grouped in pairs, and performed alternately. Four imagery tasks
were: spatial navigation around a familiar environment; auditory
imagery of a familiar tune; and right and left motor imagery of
opening and closing the hand. Signal processing methodology
included autoregressive (AR) modeling and classification based on
logistic regression and a nonlinear generative classifier.

The highest communication rate was found using the navigation
and auditory imagery tasks. In terms of classification performance
and, hence, possible communication rate, these results were signif-
icantly better ( 0.05) than those obtained with the classical
pairing of motor tasks involving imaginary movements of the left
and right hands. In terms of EEG data analysis, a nonlinear clas-
sification model provided more robust results than a linear model
( 0.01), and a lower AR model order than those used in pre-
vious work was found to be effective.

These findings have implications for establishing appropriate
methods to operate BCI systems, particularly for disabled people
who may experience difficulty with motor tasks, even motor im-
agery.

Index Terms—Brain-computer interface (BCI), cognitive task
analysis, electroencephalographic (EEG) analysis, pattern classi-
fication.

I. INTRODUCTION

BRAIN-COMPUTER interface (BCI) technology is
advancing rapidly toward enabling people with severe

physical disabilities to operate computers by thought rather than
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by physical means. A number of groups around the world are
developing BCI systems, in which surface electroencephalog-
raphy (EEG) is used to record the brain signals that control
cursor movements on a computer screen [1]–[6]. Implanted
EEG electrodes can also be used [7], but the noninvasive
method is proving to be viable and is obviously preferable.
Typically, the generation and control of EEG signals to drive a
BCI system require training of the user. Two approaches have
been used to date, which can be broadly categorised as cogni-
tive tasks and operant conditioning. The former trains subjects
to perform specific thinking tasks, while the latter relies on
biofeedback to allow the subject to acquire the automatic skill
of controlling EEG signals in order to move the cursor.

The cognitive task most commonly used in BCI studies
is motor imagery, as it produces changes in EEG that occur
naturally in movement planning and are relatively straight-
forward to detect. The signals generated in the motor cortex
can be recorded from electrodes over central head regions and
studies have produced encouraging results [1], [8]–[10]. With
the operant conditioning approach, the intention is to train
subjects to control the cursor automatically [5], [9]. Unlike
with cognitive tasks, the subjects may think about anything
(or nothing) so long as they achieve control of the cursor.
They are usually asked simply to try to move the cursor on the
computer screen, the idea being that with the aid of feedback,
the subject’s brain learns to control EEG components in an
appropriate way. Over many sessions, the subject acquires the
skill of controlling the movement of the cursor without being
consciously aware of how this is achieved. This approach may
be compared to the skill of riding a bicycle or playing tennis,
where employment of the skill is voluntary but automatic (the
tennis player consciously decides to return the ball, but choice
of muscles used, placement of the racket, timing of movements,
how hard the ball is struck, etc., are achieved automatically).

Much BCI research has involved the development of pow-
erful signal processing techniques to enable reliable and accu-
rate cursor control. Little attention has been paid to the method
of generating and controlling EEG activity [11]. No specific in-
vestigations have been conducted to explore appropriate tasks,
with the reason for choice of method in many studies not being
mentioned. While technological advances are essential, relia-
bility of BCI systems will also be influenced by the performance
of the user. Some tasks may be inappropriate for certain groups
of subjects: Motor imagery may be difficult for a person who
has been paralyzed for many years or, indeed, from birth.

The purpose of this study was to examine cognitive tasks
other than just motor imagery, in terms of being able to differen-
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tiate between their EEG signals reliably. Specifically, the aims
were:

1) to test two new cognitive tasks; an auditory and a spatial
task used in brain imaging studies, for suitability with BCI
systems;

2) to compare the reliability of the new tasks against
right/left motor imagery tasks commonly used in BCI
research;

3) to determine the most appropriate signal classification
paradigm.

II. METHODS

A. Subjects

Ten normal volunteers were studied: five males aged 29–54
and five females aged 24–44. Exclusion criteria were: any neu-
rological disorders or history of head injury; skin conditions
contraindicating the use of surface electrodes on the scalp; pre-
vious BCI training. Subjects were asked not to consume alcohol
within 24 h prior to testing and not to take coffee within 4 h.
Subjects gave their written, informed consent and the study was
approved by the Riverside Research Ethics Committee.

B. Equipment

All channels of EEG were recorded using silver-silver chlo-
ride electrodes. Skin impedance was checked at regular intervals
throughout the experiment and was maintained below 5 . All
signals were amplified using “ISO-DAM” [12] isolation ampli-
fiers with gain 10 and bandpass filtered using fourth-order ana-
logue filters with cutoff points set at 0.1 and 100 Hz. The sig-
nals were subsequently digitized at 384 Hz to 12-b resolution.
All data were stored in real-time using a Pentium 266-MHz PC.

C. Cognitive Tasks

Four cognitive tasks were studied and standardized instruc-
tions were given to subjects for conducting each task.

1) Spatial navigation (around subject’s home): The subject
was asked to imagine being in familiar surroundings,
moving from room to room and around rooms in their
home. They were asked to scan the rooms and notice
what they saw as they looked around, rather than think
about actually walking around (to avoid motor activity).
This task was inspired by work discussed in [13].

2) Auditory imagery (of a familiar tune): The subject was
asked to think of a favorite song or a familiar tune that
they enjoyed [14]. They were instructed to “listen” to it
in their head, without mouthing the words or moving any
part of their body.

3) Right Motor imagery: This involved imagining opening
and closing the right hand. This was demonstrated to the
subject, who was then asked to practice actually opening
and closing their right hand and notice how this felt. They
were then asked to imagine doing this, while making sure
that their hand did not actually move and trying to re-
member the feeling of opening and closing their hand.

4) Left Motor Imagery: The same procedure used for the
right hand was also used for the left hand.

Fig. 1. Electrode positions used in the study are shown shaded, other
electrodes are shown for reference. In the augmented 10–20 system, electrodes
at C3’, C3”, for example, are placed 3-cm posterior and anterior, respectively,
to C3.

D. Electrode Placement

Three recording sites were used, with a total of seven elec-
trodes, which were placed according to the augmented 10–20
positions at T4, P4 (right tempero-parietal for spatial and audi-
tory tasks), C3’, C3” (left motor area for right motor imagery)
and C4’, C4” (right motor area for left motor imagery), and
the ground electrode was placed just lateral to the left mastoid
process (Fig. 1). Two recording channels were used during each
task. So that pairing of tasks could be analyzed under standard-
ized conditions, the same electrode placement was required for
specific pairing. The right motor imagery task was to be com-
pared with the two new cognitive tasks, as well as the left motor
imagery task. It was, therefore, necessary to repeat the right
imagery task under two conditions: For one set of tasks (right
motor imagery, spatial and auditory, performed randomly), the
two recording channels used electrodes at C3’–C3” and T4–P4.
For the other set, in which left and right motor imagery tasks
were to be compared (again in random order), electrodes were
placed at C3’–C3” and C4’–C4”.

E. Performance of Cognitive Tasks

Standardized instructions were given to each subject. They
were asked to remain as still as possible while performing the
tasks. Within each pairin, each task was performed for 10 s and
repeated ten times, with 5 s rest between each one. Sufficient
time was also given between each task pairing to allow the sub-
ject to rest. Each task began in the subject’s own time, initiated
by pressing a key on the computer with recording starting 5 s
later. Instructions appeared on the computer screen, counting
down to the start of the task. A stationary cursor was present on
the screen during the 10-s recording period. The order of cogni-
tive tasks, within each of the two sets, was randomised to mini-
mize the effects of fatigue. Between the two sets of tasks tested,
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the electrode input to one “ISO-DAM” channel was changed
(i.e., T4–P4 exchanged with C4’–C4,” as explained previously).

After the recording session, subjects were asked to provide
feedback about performing the different tasks. They were asked
to rate the navigation, auditory, and right motor tasks in terms
of difficulty with concentration on a scale of 0–5 (with 5 being
difficult and 0 being easy). They were also given the opportunity
to make comments about why they found any particular tasks
relatively easy or difficult to perform.

III. DATA ANALYSIS

In order to ensure that the conclusions drawn from the exper-
iments were meaningful, we first aimed to find the most appro-
priate processing technique. The approach was classical in the
sense that the analysis was separated into a preprocessing and
a classification stage, the latter being conditioned on the results
from preprocessing. The overall structure of the BCI consists of
a preprocessing method, a classification stage, and final sensor
fusion based on a naïve Bayes assumption. These constituent
parts of the BCI are described in detail in the following.

A. Signal Parameterization and Preprocessing

All EEG data were recorded at a sample rate of 384 Hz and
subsampled to 192 Hz. Subsequent analysis investigated the use
of low-pass finite impulse response (FIR) filters at 45 and 96
Hz (see Section IV), the coefficients of which were obtained
using the method of least-squares [15]. The EEG signals were
parameterized using a lattice filter representation of an auto
regressive (AR) process that models each EEG channel sepa-
rately. The model parameters of the lattice filter AR process are
the so-called reflection coefficients. The theory behind our ap-
proach to estimating the reflection coefficients is detailed in the
following subsection.

1) Reflection Coefficients: Autoregressive (AR) models
may be regarded as signal models in which the signal sequence,
in discrete time , is modeled as the output of an all-pole
filter driven by a white noise sequence (i.e., Gaussian random
numbers). Denoting the white noise sequence as , we may
consider the observation model of for as a linear combi-
nation of past observations (the allpole filter) and an additive
noise term, i.e.,

in which represents the order of the AR process and the AR
model coefficients which parameterize the all-pole filter. While
these coefficients themselves are often used as features to repre-
sent the signal characteristics they do not have desirable proper-
ties, being highly dependent upon one another. Alternative rep-
resentations may be found by linear transformation of these co-
efficients, the most useful of which is to a set of so-called re-
flection coefficients [16]. The th reflection coefficient de-
fines the reduction in residual signal-model error when the
AR model increases its order from to

These have the advantage that an increase in model order does
not effect the reflection coefficients from previous orders, and
hence, there is little interdependency between the coefficients,
thus making them more suitable for pattern analysis techniques.

The extraction of reflection coefficients was performed using
a Bayesian method, which is described in [17]. This section
summarizes the results of a Bayesian analysis of a lattice filter
representation of an AR Gaussian process. The coefficients of
this model are the reflection coefficients, henceforth denoted by

. A review of AR lattice filters can be found in [18]. As we
want to model real EEG, we know with certainty that the under-
lying AR-process must be stable. As the reflection coefficients
of a stable model have to be within the interval [ 1, 1], we may
use a flat prior within this range and set . Another
parameter of the lattice filter model is the precision of the noise
model for , which we denote by . Since the noise level is a
scale parameter, we may follow [19] and use the Jeffrey’s prior

.
In order to arrive at an expression for the posterior distribu-

tion over the th reflection coefficient , we treat both the
th stage and the noise level as nuisance parameters and

integrate them out. Using as forward prediction errors and
as backward prediction errors at the th stage, we obtain

for the a posteriori distribution of the th-order reflection co-
efficient, in which

(1)

represents the most probable value of the reflection coefficient,
and

(2)

is the corresponding variance. The Bayesian model evidence of
the th reflection coefficient is

(3)

in which represents the hypothesis that signal (i.e., non-
noise) information may be extracted from the observations set

by the lattice AR model.
Comparing the th lattice filter stage with the Bayesian ev-

idence of not using the th reflection coefficient allows model
selection and measures model uncertainty. We obtain the evi-
dence of not using the th reflection coefficient by integrating
out the th-order AR coefficients and the noise level . We in-
dicate the corresponding model by and obtain

(4)
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Taking equal priors for both models, the a posteriori proba-
bility of the th reflection coefficient compared to a white noise
explanation is

(5)

The probability has also the interpretation that it es-
timates how likely a particular segment of a time series is to
contain information that can be extracted with a lattice filter
AR-model. Thus, with probability the time series
contains information about .

2) Data Detrending: Differencing is usually applied to re-
move linear and higher order trends from time series. This is
necessary because trends violate the assumptions underlying the
AR-process model. In order to obtain further insight into this
approach, we consider the application of the first-order differ-
ence operator to a time series with a zero-order trend (nonzero
mean) we write [18]

(6)

in which is an arbitrary constant, is the white-noise
driving term, and is the impulse response function of the
AR filter. The first term is simply the AR model and the second
term represents a model for the nonzero offset. We may rewrite
(6) to give

(7)

Hence, differencing the time series leads to another time series
which fulfills the assumptions underlying AR-processes. The
resulting time series

(8)

has the same filter coefficients as the original time series; how-
ever, the noise model has changed from to

. The contribution of is only of mathematical
interest since this term exists only at time . We now con-
sider the the influence of the first-order difference operation on
the driving white noise sequence . According to our AR as-
sumptions, all are independent and identically distributed
(i.i.d.) samples of Gaussian random numbers. Hence, the first
order difference of the sequence is equivalent to taking the
difference of two Gaussian random numbers with zero mean
and identical standard deviation . The resulting sequence is
still i.i.d. zero mean Gaussian, however, with doubled variance,
i.e., . Hence, extracting the AR coefficients
from the differenced time series should reveal the true under-
lying filter coefficients. The only difference is that the estimates
of the driving noise variance are doubled.

B. Data Classification

Classification was based on logistic regression and on a
nonlinear generative classifier. Logistic regression is a standard
technique in pattern recognition and can, for example, be
found in [20]. It is also the method of choice in previous BCI

work such as [10]. The generative classifier is inferred using a
variational learning framework, for which details of the method
are found in [17].

Compared with nonprobabilistic models, the chosen ap-
proach has two advantages.

1) Generative models provide the possibility to solve
missing data problems. We may infer the conditional
probability density over missing inputs during both
training and prediction and the conditional probability of
missing target labels during training.

2) Probabilistic learning provides means to determine an ap-
propriate model structure. It not only provides probabil-
ities for classes, but probabilities over the complexity of
the model as well. With appropriate inference procedures,
such as the variational Bayesian scheme used in this work,
we can guarantee that the model complexity is chosen ap-
propriately. We avoid the precarious requirement of as-
sessing many models of different complexity using more
traditional methods, such as cross-validation.

Of course, we have to pay a price for these advantages: As is
pointed out in [20], modeling class conditional densities is much
more difficult than modeling posterior probabilities directly.1

We consider a set of classes whose posterior probabilities
we wish to infer given an input, or feature, vector which is
given by the vector of reflection coefficients, i.e., .
Denoting the class priors as , we may write

(9)

in which the class-conditional probabilities are modeled via a
mixture model with components, i.e.,

(10)

in which are the parameters of the component densities. In
this form, the approach we take is similar to that of a mixture
density network and a radial basis function (RBF) classifier. We
may use Bayes’ theorem to easily express the posterior proba-
bilities for classes as . The compo-
nent densities can be any parameterized density func-
tion. For the sake of convenience we will use normal densities
with diagonal covariance matrices; hence, corresponds to a
parameter vector whose components are the mean and diagonal
covariance elements. The problem then becomes one of infer-
ring the unknown model parameters given a training data set.
The BCI classifier is infered using a variational Bayesian ap-
proach which has been developed in [17] and was used previ-
ously for sleep analysis [22].

C. Sensor Fusion

Sensor fusion was performed using 1-s sliding windows with
0.5-s overlap and assuming that the observations in the window
were class conditionally independent. In this case, we obtain the

1As is, for example, mentioned in [21], modeling a posteriori probabilities
is, in turn, more complex then modeling class labels. However, having the class
labels only, we do not know how reliable they are.
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TABLE I
TASK PAIRINGS

total probability of the events as the normalized product of the
individual probabilities for each observation in the window, i.e.,

(11)

It should be noted that this approach neglects the uncertainty
present in the modeling process, per se, and that this idea of
sensor fusion is identical to the “latent space smoothing” as is
advocated in [23] and applied to BCI data in [10].

D. Comparison of Classifiers

For results of the form generated by our experiments, we
need to count the number of errors and made by one
classifier and not by the other [20]. The numbers and
are from a binomial distribution and the exact null hypoth-
esis, to be rejected, is that ( , ) is a probable outcome from

. This is achieved by summing the probabilities
of the outcome ( , ) along with all less probable outcomes
under the null hypothesis, then rejecting using an appropriate
significance level.

IV. RESULTS

Based on the cognitive tasks described earlier, four different
pairings were considered, which are shown in Table I, together
with the corresponding electrode positions.

A. Evaluation of Signal Processing Methods

Our initial experiments were designed to determine a plau-
sible combination of methods. This evaluation was performed
sequentially due to combinatorial explosion, which otherwise
would make it difficult to obtain any significant results.

Three reflection coefficients from both EEG channels were
extracted from one second sliding windows with a 0.5-s overlap.
All results presented in this paper were obtained by fusing the
predictions for two successive 0.5-s segments using a naïve fu-
sion method. The performance figures reported are, hence, ob-
tained via decisions for every 0.5-s block of data. We note that
there was no application of doubt thresholds as is sometimes
done [10]. It is quite common in BCI systems to use AR model
orders up to eight (see, e.g., [10]), obtained by considering a
model of the EEG. There is, however, a difference between the
optimal model order for such modeling of the EEG and the op-
timal number of model coefficients needed to classify EEG in a
given situation. We note that no performance gain was obtained
when successively adding reflection coefficients. For computa-
tional brevity, therefore, we retained only three coefficients.

We also confirmed empirically that nonlinear classification is
indeed required for optimal BCI performance and showed that
filtering has a negative effect on the classification performance.

TABLE II
NONLINEAR VERSUS LINEAR CLASSIFICATION

TABLE III
LOWPASS FILTER CUTOFF FREQUENCY AT 96 VERSUS 45 Hz

Since our data were manually checked for artifact contamina-
tion, this can only be explained by undesired side-effects of fil-
tering on the signal in the passband.

1) Linear versus Nonlinear Classification: This comparison
was performed by combining two separate models: one obtained
from each electrode site. For this experiment, the results of all
four task pairings were combined. The outcome of the exper-
iment is summarized in Table II. In this, as in all subsequent
tables of results, “correct” represents the percentage of correct
classifications for each method. The -values are obtained via
the null-hypothesis, as discussed in Section III-D. As can be
seen, the results obtained with the nonlinear (variational) classi-
fier are about 2% better than those from a linear method and the
hypothesis that both classifiers are equal can be rejected with
very high significance, which is not surprising, since we used
large sample sizes. All the following results were, hence, ob-
tained using the nonlinear method.

2) Filtering: The results obtained via low-pass filtering the
EEG with a cutoff at 45 Hz were poorer than those obtained
when using all information in the EEG up to 96 Hz. These results
are summarized in Table III.

The investigations in this section, thus, suggested that we
should evaluate the neuro-physiological questions about op-
timal cognitive tasks using the proposed nonlinear classification
and extract reflection coefficients without applying additional
filtering.

B. Neuro-Cognitive Examination

To assess different cognitive tasks for their viability to drive a
BCI, we test for two different variables. First, we investigate the
information available at different electrode sites to discriminate
between cognitive tasks.

1) Electrode Site: The results reported in Table IV combine
those obtained from discriminating among each of the first
three tasks of Table I. We see that electrode site T4–P4 was
significantly superior to site C3’–C3”. Even more remarkable
is that fusing the predictions obtained from both channels did
not change the overall result. It, thus, suffices to record from
electrodes T4–P4.

2) Task Combinations: The final objective was to assess
which pair of tasks produced EEG profiles that could be most
easily discriminated. In order to be able to compare the first
three tasks with the combined motor imagery task (which
was recorded from different electrode sites), we combined the
decisions obtained from each electrode site. The results of this
comparison are reported in Table V. Combining navigation
and auditory tasks was significantly superior to all other task
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TABLE IV
CLASSIFICATION ACCURACY FROM DIFFERENT ELECTRODE SITES

TABLE V
CLASSIFICATION ACCURACY FROM DIFFERENT COGNITIVE TASK

combinations, including the traditional right versus left motor
imagery hand movement tasks.

Feedback from subjects regarding their perceived ease or dif-
ficulty of performing each task indicated that the nonmotor tasks
were easier to perform and required less concentration than the
motor tasks. The mean scores for the 0–5 (0 being easy, 5 being
difficult) rating scale used were navigation , auditory

, and right motor . There was no significant dif-
ference between any pairing (e.g., navigation against auditory)
of task scores (Wilcoxon rank test with subjects having
responded to the scoring questions), but if navigation and audi-
tory tasks were combined, they had a significantly lower score
than the right motor task. ( 0.05 using a Wilcoxon rank
statistic. As before, .)

V. DISCUSSION AND CONCLUSION

The present findings have implications for both the clinical
and technical aspects in the development and implementation of
BCI systems. The cognitive tasks of spatial navigation around
a familiar environment and auditory imagery of a familiar tune,
which we selected from those previously used in brain imaging
studies, have produced more reliable results than the motor im-
agery tasks commonly used for BCI studies. The present eval-
uation of signal processing methodology has also refined the
data-analysis technique used in the BCI system being devel-
oped.

The spatial navigation and auditory imagery tasks were
significantly better discriminated than other pairs of tasks
(Table V). The poorest results were found with the navigation
and right motor pair of tasks. The right and left motor tasks
usually used for BCI systems were, therefore, acceptable but
not as reliable as the nonmotor combination examined.

The feedback from subjects about ease/difficulty of per-
forming the tasks generally favored the auditory and navigation
tasks. Although objective feedback was limited and comments

were subjective, it was not surprising that subjects found
familiar songs and surroundings easier to image than the less
familiar/interesting task of imagining their hand opening and
closing.

Perhaps more functional motor tasks (e.g. “imagine slicing
a loaf of bread”) would provide more reliable results. Further-
more, tasks related to a person’s specific skills might enhance
their ability to perform and, hence, improve the reliability of
driving a BCI system, as discussed in [11] For example, mathe-
matical tasks may suit a person with skills in this area; imagining
specific motor tasks involved in a particular sport or manual skill
might be appropriate for those active in a sport or for a manual
worker. Other cognitive tasks need to be studied in larger popu-
lations of subjects, including those with different disabilities, to
determine the most appropriate tasks to use (see the following),
but there is no reason, in principle, why such tasks should not
be tailored to an individual’s particular strengths and interests.

The technical findings have an impact on a number of fac-
tors in BCI technology. During the analysis, comparison was
made of results obtained using the linear and nonlinear classi-
fication models. The relative advantages and disadvantages of
these models were outlined in the Methods. The finding that the
nonlinear results were approximately 2% more accurate, pro-
vided evidence of a refinement in the technique. This approach
was, therefore, used to examine the results for determining the
best task combinations and electrode sites. It was also shown
that a BCI system can be designed using smaller models in pre-
processing than in previous studies [10]. Examination of dif-
ferent filtering levels revealed that better results were obtained
when all the EEG information was used up to 96 Hz rather than
using a lowpass filter with a cutoff at 45 Hz.

The superior results recorded from the T4–P4 electrode site
suggests that recording from only one channel would be suffi-
cient for the nonmotor and right motor task combinations. This
means that less time needs to be spent applying the electrodes,
increasing efficiency and subject compliance, and also reduces
the amount of equipment required (since only one amplifier is
needed).

Cognitive tasks may require less skill and training time than
the automatic operant conditioning tasks. Indeed, the latter has
been reported to require many sessions and not all subjects pro-
duced reliable results and were, thus, not selected for further
study, e.g., [24].

The present study reports results from a set of naïve subjects
after only one session, and it is of note that in all subjects con-
sistent results were obtained (i.e., it remains to be seen how
much improvement could be achieved by a period of training
involving repeated sessions or whether any improvement might
be achieved by a biofeedback paradigm using the cognitive tasks
investigated).

A recent case report of a patient with severe cerebral palsy
found that, after several months of training, the patient was able
to use the BCI system successfully for communication [25].
Compliance with training in this case may have been enhanced
by distance supervision and support through a telemonitoring
system [26].

Other studies have revealed a preference for, and effective-
ness of, different tasks for driving the BCI system, which may
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vary between individual subjects [27]. Such variability provides
further support for designing a BCI system based on a broader
range of reliable tasks, so that a choice is made available for dif-
ferent subjects. For example, motor tasks may be inappropriate
for some paralyzed subjects; visual tasks and feedback may be
inappropriate for some visually impaired people, such as those
who have been totally blind since birth; following severe head
injury, concentration ability can be very limited, so people may
not be able to comply with the demands of certain tasks, partic-
ularly using operant conditioning methods.

Exploration of cognitive tasks other than those examined in
the present study, as well as operant conditioning methods, is re-
quired. Unless such a variety of tasks is made available, and their
reliability evaluated, current BCI technology may have limited
value for disabled people.
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